Numerical code corresponding to our publication titled: Bayesian analysis of fracture of polyamide 12 U-notched specimens. Part -2 Model selection based on Bayesian Statistics

This blog is the second part of our series, where we share the Python code used in our paper titled: Bayesian Analysis of Fracture of Polyamide 12 U-Notched Specimens, developed in collaboration with the research group of Professor Jesús Rodríguez-Pérez (DIMME, Grupo de Durabilidad e Integridad Mecánica de Materiales Estructurales, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos). The paper was presented at the European Conference of Fracture 2024

The objective is to apply a methodology for selecting the most suitable failure criteria to predict the maximum load of notched Polyamide 12 solids.

We describe step by step the code used

Step 1: Import Libraries

Import the required libraries. In this blog, we are using PYMC3 as the fundamental library for Bayesian analysis.

import autograd.numpy as np
import pymc3 as pm
import matplotlib.pyplot as plt
import arviz as az

Step 2: Formulation of the failure criteria

The failure criteria are used to predict the critical notch stress intensity factor.

In U-notched solids, the stress field near the notch tip can be estimated using the Creager and Paris formula. The approximated stress field depends on the notch radius and the notch stress intensity factor, KU. For two geometries with the same radius, the failure of the component initiates when this factor reaches a critical value, KUC , which is a function of the nothc tip rdius. Fracture can be formulated knowing the generalized toughness funcion KUC.

This material function can be obtained experimentally by performing a fracture test for each value of the notch radius, or by assuming a failure criteria and applying it. (See Gómez, F.J., Guinea, G.V., Elices, M., 2006. Failure criteria for linear elastic materials with U-notches. International Journal of Fracture 141(1–2). doi: 10.1007/s10704-006-0066-7.)

In the current research, six failure criteria are compared and studied.

  • Theory of critical distance 1 (TCD- 1) – Mean stress criterion
  • Theory of critical distance 2 (TCD- 2) – Maximum stress criterion
  • CSED: Mean strain energy density criterion
  • FFM: Finite fracture mechanics
  • CSZ-L: Cohesive Zone Model with linear softening curve
  • Phen: Phenomenological formulation

All failure criteria are formulated using two parameters, the material fracture toughness and the fracture stress.

pi = np.pi
def KN_func1(KIC,ft, R):
    # T(t)  
    L = (KIC/ft)**2*1000
    KN = KIC*(1+pi*R/L)**1.5/(1+2*pi*R/L)
    return KN

def KN_func2(KIC,ft, R):
    # T(t)  
    L = (KIC/ft)**2*1000
    KN = KIC*(1+pi*R/(4*L))**0.5
    return KN    

def KN_func3b(KIC,ft, R):
    L = (KIC/ft)**2*1000
    m1 = 81.352
    m2=408.31
    m3=585.77
    m4=83.052
    m5=622.39
    KN = KIC*((1+m1*(R/L)+m2*(R/L)**2+m3*(R/L)**3+pi/4*(R/L)**4)/(1+(R/L)**3+m4*(R/L)+m5*(R/L)**2 ))**0.5
    return KN

def KN_func4(KIC,ft, R):
    # T(t)  
    L = (KIC/ft)**2*1000
    KN = KIC*0.947/(1-1/2.284*R/L*np.log(1+2.284*L/R))**0.5
    return KN

def KN_func5(KIC,ft, R):
    # T(t)  
    L = (KIC/ft)**2*1000
    KN = KIC*(1+pi*R/(4*L)+(-0.79835*R/L-2.1658*(R/L)**2+19.501*(R/L)**3-48.167*(R/L)**4)/(1+117.31*(R/L)**4))**0.5
    return KN

def KN_func6(KIC,ft, R):
    # T(t)  
    L = (KIC/ft)**2*1000
    KN = KIC*((1+0.47392*(R/L)+2.1382*(R/L)**2+pi/4*(R/L)**3)/(1+(R/L)**2 ))**0.5
    return KN

failure_criteria = {
    'TCD 1'   : KN_func1,
    'TCD 2'   : KN_func2,
    'CSED'    : KN_func3b,
    'FFM'     : KN_func4,
    'CZM - L' : KN_func5,
    'Phen.'   : KN_func6
}

Step 3: Generate Synthetic Data

We’ll create a synthetic dataset following one of the failure criteria studied in our paper. Original data can be found in previous publications as: Crespo, M., Gómez-del Río, M.T., Rodríguez, J., 2017. Failure of SLS polyamide 12 notched samples at high loading rates. Theoretical and Applied Fracture Mechanics 92. doi: 0.1016/j.tafmec.2017.08.008. Crespo, M., Gómez-del Río, T., Rodríguez, J., 2019. Failure of polyamide 12 notched samples manufactured by selective laser sintering. Journal of Strain Analysis for Engineering Design 54(3). doi: 10.1177/0309324719847817.

# Set fixed parameters for synthetic data
KIC = 3.25  
ft = 82.0    

# Generate synthetic data
N = 100  # Number of data points
radio_vect = np.linspace(1e-5, 1.2, N)
mean_KN = KN_func1(KIC,ft, radio_vect)

# Adding noise to simulate real measurements
kn_vect = mean_KN + np.random.normal(0, 0.1,N)

# Plot the synthetic data
plt.scatter(radio_vect, kn_vect, color='blue', label='Synthetic KN data')
plt.plot(radio_vect,mean_KN, color='red', linestyle='--', label='Initial curve')
plt.xlabel('Sample')
plt.ylabel(r'K$_N$ (MPa m$^{0.5}$)')
plt.ylim([0,None])
plt.legend()
plt.show()

data = {
    'radio_vect': radio_vect,
    'kn_vect': kn_vect
}

Step 4: Define the Bayesian Model

Now, we’ll set up the Bayesian model using PyMC3. All the local failure criterion proposed has two parameters, the fracture toughness and the critical stress. It is assumed that the experimental error does not depend on the notch radius.

  • KIC​: Represents the critical stress intensity factor (fracture toughness).
  • ft: Critical stress.
  • ϵ: The error parameter.

We’ll specify priors for the two material parameters, and, the standard deviation.

class BayesianModelFitter:
    def __init__(self, data,kn_fun):
        """
        Initialize the BayesianModelFitter with the necessary data.
        
        Parameters:
        - data: Dictionary or DataFrame containing the data needed for the model.
        """
        self.data = data
        self.kn_fun = kn_fun
        self.trace = None
        self.model = None

    def fit_model(self):
        """Set up and fit the Bayesian model using PyMC3."""
        with pm.Model() as self.model:
            # Example model setup (adjust according to actual needs)
            KIC = pm.Uniform('KIC', 1, 5)  # Prior example
            ft = pm.Uniform('ft', 10, 150)
            ϵ = pm.InverseGamma('ϵ', alpha=1.0,beta=1)

            radio_vect = self.data['radio_vect']
            kn_vect = self.data['kn_vect']

            KN_pred = pm.Normal('KN_pred', mu=self.kn_fun(KIC,ft, radio_vect), sd=ϵ, observed=kn_vect)


            self.trace = pm.sample(3000, tune=1000,cores=3)


        return self.trace

    def plot_posterior(self):
        """Plot the fitting results using Arviz."""
        if self.trace:
            az.plot_trace(self.trace)
            plt.show()
        else:
            print("Model has not been fitted yet. Please run fit_model() first.")


    def plot_fit(self):
        """Plot the fitting results using Arviz."""
        if self.trace:
            xr = np.linspace(0,1.25,100)
            KIC_m = self.trace['KIC'].mean()
            ft_m = self.trace['ft'].mean()

            draws = range(0,len(self.trace['KIC']),25)

            az.style.use("default")
            fig,ax = plt.subplots()

            for i in draws:
                for j in draws:
                    plt.plot(xr,self.kn_fun(self.trace['KIC'][i],self.trace['ft'][j],xr),c='lightpink')
            ax.plot(xr,self.kn_fun(KIC_m,ft_m, xr),c='teal')
            ax.plot(radio_vect,kn_vect,'C0.',color='red')
            ax.set_xlim(0,None)
            ax.set_ylim(0,4)
            ax.tick_params(axis="y",direction="in")
            ax.tick_params(axis="x",direction="in",pad=10)
            plt.ylabel(r'K$_{UC}$ (MPam$^{0.5}$)',fontsize=20)
            plt.xlabel('Radio (mm)',fontsize=20)
            plt.yticks([0,1,2,3,4],fontsize=20)
            plt.xticks(fontsize=20)           
            plt.show()
        else:
            print("Model has not been fitted yet. Please run fit_model() first.")



    def calculate_waic(self):
        """Calculate and return the WAIC value of the fitted model."""
        if self.trace and self.model:
            waic = az.waic(self.trace)
            print(f"WAIC: {waic.waic}")
            return waic.waic
        else:
            print("Model has not been fitted yet. Please run fit_model() first.")
            return None

Step 5: Fit the Results

The six models analyzed are fitted

trace = dict()
waic = dict()
for key in failure_criteria.keys():
    KN_func = failure_criteria[key]
    fitter = BayesianModelFitter(data,KN_func)
    trace_g = fitter.fit_model()
    print(key)
    fitter.plot_fit()
    az.summary(trace_g)
    trace[key] = trace_g
    waic[key] = fitter.calculate_waic()

TCD 1

TCD 2

CSED

FFEM

CZM-L

Phen.

Step 6: Plot the posterior distribution of the fracture toughness

Now, let’s visualize the posterior distribution of the material fracture toughness obtained with the six failure criteria.

az.style.use("arviz-white")
datas = list(trace.values())

az.plot_density(datas,var_names=['KIC'],textsize=20,hdi_prob=0.99,data_labels=trace.keys())
#trace_fig.set_xticklabels(x_labels, fontsize=14)
plt.xlabel(r'K$_{IC}$ (MPa m$^{0.5}$)',fontsize=20)
plt.title('')
#plt.legend( loc='upper center',fontsize=20)
#plt.legend( loc=(0.7, 0.6),fontsize=20)
plt.legend( loc=(0.8, 0.3),fontsize=20)
plt.xlim(2.75,3.5)

Step 7: Select the best model

The optimal failure criterion is identified as the one that minimizes the WAIC (Watanabe-Akaike Information Criterion), a Bayesian measure used to compare model performance. A lower WAIC value indicates a better fit to the data while penalizing model complexity, ensuring the selection balances accuracy and parsimony. By evaluating multiple failure criteria, the Bayesian approach efficiently quantifies and ranks their predictive capabilities. Thus, the criterion with the minimum WAIC value is considered the most reliable for predicting fracture behavior in U-notched Polyamide 12 specimens.

Failure criteriaWAIC
TCD-1: Mean stress criterion95.57
TCD-2: Maximum stress criterion63.82
CSED: Mean strain energy density criterion93.93
FFM: Finite fracture mechanics59.08
CSZ-L: Cohesive Zone Model with linear softening curve80.28
Phen: Phenomenological formulation70.75

Following the previous table two failure criteria are proposed: FFM – Finite fracture mechanics and TCD-2 – Maximum stress criterion.

Conclusions

In this blog, we have successfully applied Bayesian inference to select the best failure criteria for predicting the failure of U-notched components in Polyamide 12. The Bayesian approach proves to be a valuable decision-making tool for selecting local failure criteria in notched fracture studies, with the WAIC value proposed as a criterion selection method. The choice of failure criterion significantly influences fracture toughness. Epistemic errors can substantially increase the uncertainty of the fracture toughness value. In summary, analyzing notches, particularly with U-notch specimens, is a powerful approach for assessing structural integrity and optimizing designs. By employing Bayesian analysis, the proposed methodology effectively quantifies uncertainties associated with fracture toughness evaluations, considering both experimental error and epistemic uncertainty.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *