In this post, we explore how to integrate a neural network in a user material subroutine (UMAT) for CalculiX. The main idea is that the material’s plastic behavior is learned by a neural network and embedded into the UMAT code, in combination with a classic linear elastic model.
We’ll use a UMAT example with the following characteristics:
- Linear isotropic elasticity
- Von Mises plasticity with isotropic hardening
The neural network in this example takes two normalized inputs:
- The equivalent plastic strain
- The trial Von Mises, a calculated stress state based on the current strain increment.
Normalization is done using mean and standard deviation values defined as:
x(1) = (EQPLAS - inputmu(1)) / inputstd(1) x(2) = (SMISES - inputmu(2)) / inputstd(2)
The example contains a simple feedforward neural network with one hidden layer of 10 neurons using ReLU activation. The trained weights and biases are manually stored in Fortran arrays:
do i = 1, NHIDDEN do j = 1,2 x1(i) = x1(i) + x(j) * L1(i,j) end do x1(i) = max(0.0, x1(i) + b1(i)) end do
Then, the output is computed and denormalized:
y = y * outputstd + outputmu
The following updates are performed after inference:
- Stress tensor
stre(6)
is recalculated using the plastic flow direction - The internal variable
EQPLAS
is updated and stored inxstate
We also calculate the consistent tangent stiffness matrix stiff(21)
using effective elastic and hardening moduli derived at the updated point.
- This UMAT is only valid for solid elements (not plane stress elements).
- The neural network must be trained offline, using clean, normalized datasets.
subroutine umat_user(amat,iel,iint,kode,elconloc,emec,emec0, & beta,xokl,voj,xkl,vj,ithermal,t1l,dtime,time,ttime, & icmd,ielas,mi,nstate_,xstateini,xstate,stre,stiff, & iorien,pgauss,orab,pnewdt,ipkon) ! ! calculates stiffness and stresses for a user defined material ! law ! ! icmd=3: calculates stress at mechanical strain ! else: calculates stress at mechanical strain and the stiffness ! matrix ! ! INPUT: ! ! amat material name ! iel element number ! iint integration point number ! ! kode material type (-100-#of constants entered ! under *USER MATERIAL): can be used for materials ! with varying number of constants ! ! elconloc(*) user defined constants defined by the keyword ! card *USER MATERIAL (actual # = ! -kode-100), interpolated for the ! actual temperature t1l ! ! emec(6) Lagrange mechanical strain tensor (component order: ! 11,22,33,12,13,23) at the end of the increment ! (thermal strains are subtracted) ! emec0(6) Lagrange mechanical strain tensor at the start of the ! increment (thermal strains are subtracted) ! beta(6) residual stress tensor (the stress entered under ! the keyword *INITIAL CONDITIONS,TYPE=STRESS) ! ! xokl(3,3) deformation gradient at the start of the increment ! voj Jacobian at the start of the increment ! xkl(3,3) deformation gradient at the end of the increment ! vj Jacobian at the end of the increment ! ! ithermal 0: no thermal effects are taken into account ! >0: thermal effects are taken into account (triggered ! by the keyword *INITIAL CONDITIONS,TYPE=TEMPERATURE) ! t1l temperature at the end of the increment ! dtime time length of the increment ! time step time at the end of the current increment ! ttime total time at the start of the current step ! ! icmd not equal to 3: calculate stress and stiffness ! 3: calculate only stress ! ielas 0: no elastic iteration: irreversible effects ! are allowed ! 1: elastic iteration, i.e. no irreversible ! deformation allowed ! ! mi(1) max. # of integration points per element in the ! model ! nstate_ max. # of state variables in the model ! ! xstateini(nstate_,mi(1),# of elements) ! state variables at the start of the increment ! xstate(nstate_,mi(1),# of elements) ! state variables at the end of the increment ! ! stre(6) Piola-Kirchhoff stress of the second kind ! at the start of the increment ! ! iorien number of the local coordinate axis system ! in the integration point at stake (takes the value ! 0 if no local system applies) ! pgauss(3) global coordinates of the integration point ! orab(7,*) description of all local coordinate systems. ! If a local coordinate system applies the global ! tensors can be obtained by premultiplying the local ! tensors with skl(3,3). skl is determined by calling ! the subroutine transformatrix: ! call transformatrix(orab(1,iorien),pgauss,skl) ! ! ! OUTPUT: ! ! xstate(nstate_,mi(1),# of elements) ! updated state variables at the end of the increment ! stre(6) Piola-Kirchhoff stress of the second kind at the ! end of the increment ! stiff(21): consistent tangent stiffness matrix in the material ! frame of reference at the end of the increment. In ! other words: the derivative of the PK2 stress with ! respect to the Lagrangian strain tensor. The matrix ! is supposed to be symmetric, only the upper half is ! to be given in the same order as for a fully ! anisotropic elastic material (*ELASTIC,TYPE=ANISO). ! Notice that the matrix is an integral part of the ! fourth order material tensor, i.e. the Voigt notation ! is not used. ! pnewdt to be specified by the user if the material ! routine is unable to return the stiffness matrix ! and/or the stress due to divergence within the ! routine. pnewdt is the factor by which the time ! increment is to be multiplied in the next ! trial and should exceed zero but be less than 1. ! Default is -1 indicating that the user routine ! has converged. ! ipkon(*) ipkon(iel) points towards the position in field ! kon prior to the first node of the element's ! topology. If ipkon(iel) is smaller than 0, the ! element is not used. ! * implicit none ! character*80 amat ! integer ithermal(*),icmd,kode,ielas,iel,iint,nstate_,mi(*),iorien, & i,K1,K2,N ! real*8 elconloc(*),stiff(21),emec(6),emec0(6),beta(6),stre(6), & vj,t1l,dtime,xkl(3,3),xokl(3,3),voj,pgauss(3),orab(7,*), & time,ttime ! real*8 xstate(nstate_,mi(1),*),xstateini(nstate_,mi(1),*) ! C ---------------------------------------------------------------- C UMAT FOR ISOTROPIC ELASTICITY AND ISOTROPIC MISES PLASTICITY C CANNOT BE USED FOR PLANE STRESS C ---------------------------------------------------------------- C PROPS(1) - E C PROPS(2) - NU C PROPS(3..) - YIELD AND HARDENING DATA C CALLS UHARD FOR CURVE OF YIELD STRESS VS. PLASTIC STRAIN C ---------------------------------------------------------------- C ---------------------------------------------------------------- C UMAT FOR ISOTROPIC ELASTICITY C CANNOT BE USED FOR PLANE STRESS C ---------------------------------------------------------------- C PROPS(1) - E C PROPS(2) - NU C ---------------------------------------------------------------- C real*8 EMOD,NU,EBULK3,EG2,EG3,ELAM,G(6,6),DSTRAN(6) real*8 EQPLAS,SMISES,SYIEL0,HARD,SHYDRO,FLOW(6),SYIELD,RHS real*8 EFFG,EFFG2,EFFG3,EFFLAM,EFFHRD real*8 ZERO,ONE,TWO,THREE,SIX,ENUMAX,TOLER INTEGER KEWTON,NVALUE,NHIDDEN PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, SIX=6.D0, 1 ENUMAX=.4999D0, NEWTON=10, TOLER=1.0D-6) real*8 L1(10,2),L2(10) real*8 b1(10),b2 real*8 x(2),x1(10),y,inputmu(2),inputstd(2),outputmu,outputstd DIMENSION xmatrix(10,2) ! Initialize the 4x3 matrix with the specified values DATA L1 /0.122878104,0.50649923, & -0.33488736,-0.02137515, & -0.034247752,0.176506, & -0.010768869,-0.111633584, & 0.031866815,-0.059505835, & -0.19340435,-0.79933566, & 0.528451,-0.61828786, & -0.64486074,0.28845328, & -0.38559982,-0.26867574, & 0.52625835,-0.20963475/ DATA B1 /-0.052253507,-0.20429772, & 0.13519116,1.0849684, & 1.1447347,0.79870075, & 0.6741626,0.63055074, & 0.95799935,0.44531068/ DATA L2 /-0.024199534,-0.25845042, & 0.40025997,-0.20823033, & -0.23183896,0.3965015, & -0.21810858,-0.25155863, & 0.41102442,-0.13165537/ DATA B2 /0.09221251/ DATA inputmu /5.0861180e-01, 5.0296434e+04/ DATA inputstd /2.8188679e-01, 2.8522984e+04/ DATA outputmu /0.21653831/ DATA outputstd /0.12359327/ NHIDDEN = 10 C C Elastic matrix C C EMOD = elconloc(1) ENU=MIN(elconloc(2), ENUMAX) EBULK3=EMOD/(ONE-TWO*ENU) EG2=EMOD/(ONE+ENU) EG=EG2/TWO EG3=THREE*EG ELAM=(EBULK3-EG2)/THREE C C ELASTIC STIFFNESS C DO K1=1,6 DO K2=1,6 G(K1,K2)=0.D0 ENDDO ENDDO DO K1=1, 3 DO K2=1, 3 G(K2, K1)=ELAM END DO G(K1, K1)=EG2+ELAM END DO DO K1=4, 6 G(K1 ,K1)=EG END DO C C Strain increment C DO K1=1,6 DSTRAN(K1)=emec(K1)-emec0(K1) ENDDO C C DEFINING Initial STRESS AND STRAIN RELATION C stre(1)=stre(1)+G(1,1)*DSTRAN(1)+G(1,2)*DSTRAN(2) & +G(1,3)*DSTRAN(3) stre(2)=stre(2)+G(2,1)*DSTRAN(1)+G(2,2)*DSTRAN(2) & +G(2,3)*DSTRAN(3) stre(3)=stre(3)+G(3,1)*DSTRAN(1)+G(3,2)*DSTRAN(2) & +G(3,3)*DSTRAN(3) stre(4)=stre(4)+G(4,4)*DSTRAN(4) stre(5)=stre(5)+G(5,5)*DSTRAN(5) stre(6)=stre(6)+G(6,6)*DSTRAN(6) C C NOW THE STATE VARAIBLES WILL BE UPDATED C EQPLAS = xstateini(1,iint,iel) C C CALCULATE EQUIVALENT VON MISES STRESS C SMISES=(stre(1)-stre(2))**2+(stre(2)-stre(3))**2 1 +(stre(3)-stre(1))**2 DO K1=4,6 SMISES=SMISES+SIX*stre(K1)**2 END DO SMISES=SQRT(SMISES/TWO) C C GET YIELD STRESS FROM THE SPECIFIED HARDENING CURVE C NVALUE=(-kode-100)/2-1 c CALL UHARD(SYIEL0, HARD, EQPLAS, elconloc(3),NVALUE) C C DETERMINE IF ACTIVELY YIELDING C IF (SMISES.GT.(ONE+TOLER)*SYIEL0) THEN C C ACTIVELY YIELDING C SEPARATE THE HYDROSTATIC FROM THE DEVIATORIC STRESS C CALCULATE THE FLOW DIRECTION C SHYDRO=(stre(1)+stre(2)+stre(3))/THREE DO K1=1,3 FLOW(K1)=(stre(K1)-SHYDRO)/SMISES END DO DO K1=4, 6 FLOW(K1)=stre(K1)/SMISES END DO C C SOLVE FOR EQUIVALENT VON MISES STRESS C AND EQUIVALENT PLASTIC STRAIN INCREMENT USING NEWTON ITERATION C x(1) = (EQPLAS - inputmu(1)) / inputstd(1) x(2) = (SMISES - inputmu(2)) / inputstd(2) x1 = 0.0 do i = 1, NHIDDEN do j =1,2 x1(i) = x1(i) + x(j) * L1(i,j) end do x1(i) = x1(i) + b1(i) end do do i = 1, 10 x1(i) = max(0.0, x1(i)) end do y = 0 do i = 1, NHIDDEN y = y + L2(i) * x1(i) end do y = y + b2 y = y * outputstd + outputmu DEQPL = y CALL UHARD(SYIELD,HARD,EQPLAS+DEQPL,elconloc(3),NVALUE) C C UPDATE STRESS, ELASTIC AND PLASTIC STRAINS AND C EQUIVALENT PLASTIC STRAIN C DO K1=1,3 stre(K1)=FLOW(K1)*SYIELD+SHYDRO END DO DO K1=4,6 stre(K1)=FLOW(K1)*SYIELD END DO EQPLAS=EQPLAS+DEQPL C C CALCULATE PLASTIC DISSIPATION C xstate(1,iint,iel) = EQPLAS C C FORMULATE THE JACOBIAN (MATERIAL TANGENT) C FIRST CALCULATE EFFECTIVE MODULI C EFFG=EG*SYIELD/SMISES EFFG2=TWO*EFFG EFFG3=THREE/TWO*EFFG2 EFFLAM=(EBULK3-EFFG2)/THREE EFFHRD=EG3*HARD/(EG3+HARD)-EFFG3 DO K1=1, 3 DO K2=1, 3 G(K2, K1)=EFFLAM END DO G(K1, K1)=EFFG2+EFFLAM END DO DO K1=4, 6 G(K1, K1)=EFFG END DO DO K1=1, 6 DO K2=1, 6 G(K2, K1)=G(K2, K1)+EFFHRD*FLOW(K2)*FLOW(K1) END DO END DO ENDIF C C ! if(icmd.ne.3) then ! ! insert here code to calculate the stiffness matrix ! stiff(1)=G(1,1) stiff(2)=G(1,2) stiff(3)=G(2,2) stiff(4)=G(1,3) stiff(5)=G(2,3) stiff(6)=G(3,3) stiff(7)=G(1,4) stiff(8)=G(2,4) stiff(9)=G(3,4) stiff(10)=G(4,4) stiff(11)=G(1,5) stiff(12)=G(2,5) stiff(13)=G(3,5) stiff(14)=G(4,5) stiff(15)=G(5,5) stiff(16)=G(1,6) stiff(17)=G(2,6) stiff(18)=G(3,6) stiff(19)=G(4,6) stiff(20)=G(5,6) stiff(21)=G(6,6) ! write(*,*) 'stiff',(stiff(i),i=1,21) endif ! return end SUBROUTINE UHARD(SYIELD,HARD,EQPLAS,TABLE,NVALUE) C REAL*8 TABLE(2,NVALUE),SYIELD,HARD,EQPLAS REAL*8 EQPL0,EQPL1,DEQPL,SYIEL0,SYIEL1,DSYIEL INTEGER NVALUE C PARAMETER(ZERO=0.D0) C C SET YIELD STRESS TO LAST VALUE OF TABLE, HARDENING TO ZERO C SYIELD=TABLE(1, NVALUE) HARD=ZERO c C IF MORE THAN ONE ENTRY, SEARCH TABLE C IF(NVALUE.GT.1) THEN DO K1=1, NVALUE-1 EQPL1=TABLE(2,K1+1) IF(EQPLAS.LT.EQPL1) THEN EQPL0=TABLE(2, K1) C C CURRENT YIELD STRESS AND HARDENING C DEQPL=EQPL1-EQPL0 SYIEL0=TABLE(1, K1) SYIEL1=TABLE(1, K1+1) DSYIEL=SYIEL1-SYIEL0 if (DEQPL.NE.ZERO) THEN HARD=DSYIEL/DEQPL else HARD = ZERO ENDIF SYIELD=SYIEL0+(EQPLAS-EQPL0)*HARD GOTO 10 ENDIF END DO 10 CONTINUE ENDIF RETURN END