Developing User Material Subroutines in CALCULIX: 4 UMAT neural network example

In this post, we explore how to integrate a neural network in a user material subroutine (UMAT) for CalculiX. The main idea is that the material’s plastic behavior is learned by a neural network and embedded into the UMAT code, in combination with a classic linear elastic model.

We’ll use a UMAT example with the following characteristics:

  • Linear isotropic elasticity
  • Von Mises plasticity with isotropic hardening

Neural Network Input

The neural network in this example takes two normalized inputs:

  • The equivalent plastic strain
  • The trial Von Mises, a calculated stress state based on the current strain increment.

Normalization is done using mean and standard deviation values defined as:

x(1) = (EQPLAS - inputmu(1)) / inputstd(1)
x(2) = (SMISES - inputmu(2)) / inputstd(2)

Network Architecture

The example contains a simple feedforward neural network with one hidden layer of 10 neurons using ReLU activation. The trained weights and biases are manually stored in Fortran arrays:

do i = 1, NHIDDEN
   do j = 1,2
      x1(i) = x1(i) + x(j) * L1(i,j)
   end do
   x1(i) = max(0.0, x1(i) + b1(i))
end do

Then, the output is computed and denormalized:

y = y * outputstd + outputmu

Updating State Variables

The following updates are performed after inference:

  • Stress tensor stre(6) is recalculated using the plastic flow direction
  • The internal variable EQPLAS is updated and stored in xstate

We also calculate the consistent tangent stiffness matrix stiff(21) using effective elastic and hardening moduli derived at the updated point.

Important Notes

  • This UMAT is only valid for solid elements (not plane stress elements).
  • The neural network must be trained offline, using clean, normalized datasets.

UMAT subroutine

      subroutine umat_user(amat,iel,iint,kode,elconloc,emec,emec0,
     &        beta,xokl,voj,xkl,vj,ithermal,t1l,dtime,time,ttime,
     &        icmd,ielas,mi,nstate_,xstateini,xstate,stre,stiff,
     &        iorien,pgauss,orab,pnewdt,ipkon)
!
!     calculates stiffness and stresses for a user defined material
!     law
!
!     icmd=3: calculates stress at mechanical strain
!     else: calculates stress at mechanical strain and the stiffness
!           matrix
!
!     INPUT:
!
!     amat               material name
!     iel                element number
!     iint               integration point number
!
!     kode               material type (-100-#of constants entered
!                        under *USER MATERIAL): can be used for materials
!                        with varying number of constants
!
!     elconloc(*)        user defined constants defined by the keyword
!                        card *USER MATERIAL (actual # =
!                        -kode-100), interpolated for the
!                        actual temperature t1l
!
!     emec(6)            Lagrange mechanical strain tensor (component order:
!                        11,22,33,12,13,23) at the end of the increment
!                        (thermal strains are subtracted)
!     emec0(6)           Lagrange mechanical strain tensor at the start of the
!                        increment (thermal strains are subtracted)
!     beta(6)            residual stress tensor (the stress entered under
!                        the keyword *INITIAL CONDITIONS,TYPE=STRESS)
!
!     xokl(3,3)          deformation gradient at the start of the increment
!     voj                Jacobian at the start of the increment
!     xkl(3,3)           deformation gradient at the end of the increment
!     vj                 Jacobian at the end of the increment
!
!     ithermal           0: no thermal effects are taken into account
!                        >0: thermal effects are taken into account (triggered
!                        by the keyword *INITIAL CONDITIONS,TYPE=TEMPERATURE)
!     t1l                temperature at the end of the increment
!     dtime              time length of the increment
!     time               step time at the end of the current increment
!     ttime              total time at the start of the current step
!
!     icmd               not equal to 3: calculate stress and stiffness
!                        3: calculate only stress
!     ielas              0: no elastic iteration: irreversible effects
!                        are allowed
!                        1: elastic iteration, i.e. no irreversible
!                           deformation allowed
!
!     mi(1)              max. # of integration points per element in the
!                        model
!     nstate_            max. # of state variables in the model
!
!     xstateini(nstate_,mi(1),# of elements)
!                        state variables at the start of the increment
!     xstate(nstate_,mi(1),# of elements)
!                        state variables at the end of the increment
!
!     stre(6)            Piola-Kirchhoff stress of the second kind
!                        at the start of the increment
!
!     iorien             number of the local coordinate axis system
!                        in the integration point at stake (takes the value
!                        0 if no local system applies)
!     pgauss(3)          global coordinates of the integration point
!     orab(7,*)          description of all local coordinate systems.
!                        If a local coordinate system applies the global 
!                        tensors can be obtained by premultiplying the local
!                        tensors with skl(3,3). skl is  determined by calling
!                        the subroutine transformatrix: 
!                        call transformatrix(orab(1,iorien),pgauss,skl)
!
!
!     OUTPUT:
!
!     xstate(nstate_,mi(1),# of elements)
!                        updated state variables at the end of the increment
!     stre(6)            Piola-Kirchhoff stress of the second kind at the
!                        end of the increment
!     stiff(21):         consistent tangent stiffness matrix in the material
!                        frame of reference at the end of the increment. In
!                        other words: the derivative of the PK2 stress with
!                        respect to the Lagrangian strain tensor. The matrix
!                        is supposed to be symmetric, only the upper half is
!                        to be given in the same order as for a fully
!                        anisotropic elastic material (*ELASTIC,TYPE=ANISO).
!                        Notice that the matrix is an integral part of the 
!                        fourth order material tensor, i.e. the Voigt notation
!                        is not used.
!     pnewdt             to be specified by the user if the material
!                        routine is unable to return the stiffness matrix
!                        and/or the stress due to divergence within the
!                        routine. pnewdt is the factor by which the time
!                        increment is to be multiplied in the next
!                        trial and should exceed zero but be less than 1.
!                        Default is -1 indicating that the user routine
!                        has converged.
!     ipkon(*)           ipkon(iel) points towards the position in field
!                        kon prior to the first node of the element's
!                        topology. If ipkon(iel) is smaller than 0, the 
!                        element is not used.
!
*      implicit none
!
      character*80 amat
!
      integer ithermal(*),icmd,kode,ielas,iel,iint,nstate_,mi(*),iorien,
     &     i,K1,K2,N
!
      real*8 elconloc(*),stiff(21),emec(6),emec0(6),beta(6),stre(6),
     &  vj,t1l,dtime,xkl(3,3),xokl(3,3),voj,pgauss(3),orab(7,*),
     &  time,ttime
!
      real*8 xstate(nstate_,mi(1),*),xstateini(nstate_,mi(1),*)
!
C ----------------------------------------------------------------
C UMAT FOR ISOTROPIC ELASTICITY AND ISOTROPIC MISES PLASTICITY
C CANNOT BE USED FOR PLANE STRESS
C ----------------------------------------------------------------
C PROPS(1) - E
C PROPS(2) - NU
C PROPS(3..) - YIELD AND HARDENING DATA
C CALLS UHARD FOR CURVE OF YIELD STRESS VS. PLASTIC STRAIN
C ----------------------------------------------------------------
C ----------------------------------------------------------------
C UMAT FOR ISOTROPIC ELASTICITY
C CANNOT BE USED FOR PLANE STRESS
C ----------------------------------------------------------------
C PROPS(1) - E
C PROPS(2) - NU
C ----------------------------------------------------------------
C
      real*8 EMOD,NU,EBULK3,EG2,EG3,ELAM,G(6,6),DSTRAN(6)
      real*8 EQPLAS,SMISES,SYIEL0,HARD,SHYDRO,FLOW(6),SYIELD,RHS
      real*8 EFFG,EFFG2,EFFG3,EFFLAM,EFFHRD
      real*8 ZERO,ONE,TWO,THREE,SIX,ENUMAX,TOLER

      INTEGER KEWTON,NVALUE,NHIDDEN


       PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, SIX=6.D0,
     1 ENUMAX=.4999D0, NEWTON=10, TOLER=1.0D-6)

  	real*8 L1(10,2),L2(10)
  	real*8 b1(10),b2
  	real*8 x(2),x1(10),y,inputmu(2),inputstd(2),outputmu,outputstd
  	DIMENSION xmatrix(10,2)

  
 ! Initialize the 4x3 matrix with the specified values
  	DATA L1 /0.122878104,0.50649923,
     &	 -0.33488736,-0.02137515,
     &	 -0.034247752,0.176506,
     &	 -0.010768869,-0.111633584,
     &	 0.031866815,-0.059505835,
     &	 -0.19340435,-0.79933566,
     &	 0.528451,-0.61828786,
     &	 -0.64486074,0.28845328,
     &	 -0.38559982,-0.26867574,
     &	 0.52625835,-0.20963475/
  	DATA B1  /-0.052253507,-0.20429772,
     &	 0.13519116,1.0849684,
     &	 1.1447347,0.79870075,
     &	 0.6741626,0.63055074,
     &	 0.95799935,0.44531068/
  	DATA L2 /-0.024199534,-0.25845042,
     &	 0.40025997,-0.20823033,
     &	 -0.23183896,0.3965015,
     &	 -0.21810858,-0.25155863,
     &	 0.41102442,-0.13165537/
  	DATA B2    /0.09221251/
  	DATA inputmu    /5.0861180e-01, 5.0296434e+04/
  	DATA inputstd    /2.8188679e-01, 2.8522984e+04/
  	DATA outputmu    /0.21653831/  	  	
  	DATA outputstd    /0.12359327/

	NHIDDEN = 10

C
C Elastic matrix
C
C
      EMOD = elconloc(1)
      ENU=MIN(elconloc(2), ENUMAX)
      EBULK3=EMOD/(ONE-TWO*ENU)
      EG2=EMOD/(ONE+ENU)
      EG=EG2/TWO
      EG3=THREE*EG
      ELAM=(EBULK3-EG2)/THREE
C
C ELASTIC STIFFNESS
C
      DO K1=1,6
        DO K2=1,6
            G(K1,K2)=0.D0
        ENDDO
      ENDDO
      DO K1=1, 3
        DO K2=1, 3
             G(K2, K1)=ELAM
          END DO
          G(K1, K1)=EG2+ELAM
       END DO
       DO K1=4, 6
          G(K1 ,K1)=EG
       END DO

C
C Strain increment
C
      DO K1=1,6
        DSTRAN(K1)=emec(K1)-emec0(K1)
      ENDDO
C
C DEFINING Initial STRESS AND STRAIN RELATION
C
       stre(1)=stre(1)+G(1,1)*DSTRAN(1)+G(1,2)*DSTRAN(2)
     &  +G(1,3)*DSTRAN(3)
       stre(2)=stre(2)+G(2,1)*DSTRAN(1)+G(2,2)*DSTRAN(2)
     &  +G(2,3)*DSTRAN(3)
       stre(3)=stre(3)+G(3,1)*DSTRAN(1)+G(3,2)*DSTRAN(2)
     &  +G(3,3)*DSTRAN(3)
       stre(4)=stre(4)+G(4,4)*DSTRAN(4)
       stre(5)=stre(5)+G(5,5)*DSTRAN(5)
       stre(6)=stre(6)+G(6,6)*DSTRAN(6)
C
C NOW THE STATE VARAIBLES WILL BE UPDATED
C
        EQPLAS = xstateini(1,iint,iel)
C
C CALCULATE EQUIVALENT VON MISES STRESS
C
       SMISES=(stre(1)-stre(2))**2+(stre(2)-stre(3))**2
     1  +(stre(3)-stre(1))**2
       DO K1=4,6
         SMISES=SMISES+SIX*stre(K1)**2
       END DO
       SMISES=SQRT(SMISES/TWO)
C
C GET YIELD STRESS FROM THE SPECIFIED HARDENING CURVE
C
       NVALUE=(-kode-100)/2-1
c
       CALL UHARD(SYIEL0, HARD, EQPLAS, elconloc(3),NVALUE)
C
C DETERMINE IF ACTIVELY YIELDING
C
      IF (SMISES.GT.(ONE+TOLER)*SYIEL0) THEN
C
C ACTIVELY YIELDING
C SEPARATE THE HYDROSTATIC FROM THE DEVIATORIC STRESS
C CALCULATE THE FLOW DIRECTION
C
         SHYDRO=(stre(1)+stre(2)+stre(3))/THREE
         DO K1=1,3
            FLOW(K1)=(stre(K1)-SHYDRO)/SMISES
         END DO
         DO K1=4, 6
            FLOW(K1)=stre(K1)/SMISES
         END DO
C
C SOLVE FOR EQUIVALENT VON MISES STRESS
C AND EQUIVALENT PLASTIC STRAIN INCREMENT USING NEWTON ITERATION
C
         x(1) = (EQPLAS - inputmu(1)) / inputstd(1)
         x(2) = (SMISES - inputmu(2)) / inputstd(2)
  	 x1 = 0.0
	 do i = 1, NHIDDEN
    	    do j =1,2
               x1(i) = x1(i) + x(j) * L1(i,j)
	    end do
    	    x1(i) = x1(i) + b1(i)       
    	 end do
    	 do i = 1, 10
            x1(i) = max(0.0, x1(i))
         end do

         y = 0
    	 do i = 1, NHIDDEN
            y = y + L2(i) * x1(i)
    	 end do
         y = y + b2
    	 y = y * outputstd + outputmu
	 DEQPL = y
         CALL UHARD(SYIELD,HARD,EQPLAS+DEQPL,elconloc(3),NVALUE)

C
C UPDATE STRESS, ELASTIC AND PLASTIC STRAINS AND
C EQUIVALENT PLASTIC STRAIN
C
         DO K1=1,3
            stre(K1)=FLOW(K1)*SYIELD+SHYDRO
         END DO
         DO K1=4,6
            stre(K1)=FLOW(K1)*SYIELD
         END DO
         EQPLAS=EQPLAS+DEQPL
C
C CALCULATE PLASTIC DISSIPATION
C
        xstate(1,iint,iel) = EQPLAS
C
C FORMULATE THE JACOBIAN (MATERIAL TANGENT)
C FIRST CALCULATE EFFECTIVE MODULI
C
         EFFG=EG*SYIELD/SMISES
         EFFG2=TWO*EFFG
         EFFG3=THREE/TWO*EFFG2
         EFFLAM=(EBULK3-EFFG2)/THREE
         EFFHRD=EG3*HARD/(EG3+HARD)-EFFG3
         DO K1=1, 3
            DO K2=1, 3
               G(K2, K1)=EFFLAM
            END DO
            G(K1, K1)=EFFG2+EFFLAM
         END DO
         DO K1=4, 6
            G(K1, K1)=EFFG
         END DO
         DO K1=1, 6
            DO K2=1, 6
               G(K2, K1)=G(K2, K1)+EFFHRD*FLOW(K2)*FLOW(K1)
            END DO
         END DO
      ENDIF
C
C
!
      if(icmd.ne.3) then
!
!        insert here code to calculate the stiffness matrix
!
         stiff(1)=G(1,1)
         stiff(2)=G(1,2)
         stiff(3)=G(2,2)
         stiff(4)=G(1,3)
         stiff(5)=G(2,3)
         stiff(6)=G(3,3)
         stiff(7)=G(1,4)
         stiff(8)=G(2,4)
         stiff(9)=G(3,4)
         stiff(10)=G(4,4)
         stiff(11)=G(1,5)
         stiff(12)=G(2,5)
         stiff(13)=G(3,5)
         stiff(14)=G(4,5)
         stiff(15)=G(5,5)
         stiff(16)=G(1,6)
         stiff(17)=G(2,6)
         stiff(18)=G(3,6)
         stiff(19)=G(4,6)
         stiff(20)=G(5,6)
         stiff(21)=G(6,6)
!      write(*,*) 'stiff',(stiff(i),i=1,21)
      endif
!
      return
      end



      SUBROUTINE UHARD(SYIELD,HARD,EQPLAS,TABLE,NVALUE)
C
      REAL*8 TABLE(2,NVALUE),SYIELD,HARD,EQPLAS
      REAL*8 EQPL0,EQPL1,DEQPL,SYIEL0,SYIEL1,DSYIEL
      INTEGER NVALUE
C
      PARAMETER(ZERO=0.D0)
C
C SET YIELD STRESS TO LAST VALUE OF TABLE, HARDENING TO ZERO
C
      SYIELD=TABLE(1, NVALUE)
      HARD=ZERO
c
C IF MORE THAN ONE ENTRY, SEARCH TABLE
C
      IF(NVALUE.GT.1) THEN
         DO K1=1, NVALUE-1
            EQPL1=TABLE(2,K1+1)
            IF(EQPLAS.LT.EQPL1) THEN
               EQPL0=TABLE(2, K1)
C
C CURRENT YIELD STRESS AND HARDENING
C
               DEQPL=EQPL1-EQPL0
               SYIEL0=TABLE(1, K1)
               SYIEL1=TABLE(1, K1+1)
               DSYIEL=SYIEL1-SYIEL0
               if (DEQPL.NE.ZERO) THEN
                  HARD=DSYIEL/DEQPL
               else
                  HARD = ZERO
               ENDIF
               SYIELD=SYIEL0+(EQPLAS-EQPL0)*HARD
               GOTO 10
            ENDIF
         END DO
   10    CONTINUE
      ENDIF
      RETURN
      END

Deja un comentario